
A M E R I C A N  M E T E O R O L O G I C A L  S O C I E T Y M AY  2 0 2 0 E608

Windows of Opportunity for Skillful Forecasts 
Subseasonal to Seasonal and Beyond
Annarita Mariotti, Cory Baggett, Elizabeth A. Barnes, Emily Becker,  
Amy Butler, Dan C. Collins, Paul A. Dirmeyer, Laura Ferranti, Nathaniel C. Johnson, 
Jeanine Jones, Ben P. Kirtman, Andrea L. Lang, Andrea Molod, Matthew Newman, 
Andrew W. Robertson, Siegfried Schubert, Duane E. Waliser, and John Albers

ABSTRACT: There is high demand and a growing expectation for predictions of environmental 
conditions that go beyond 0–14-day weather forecasts with outlooks extending to one or more 
seasons and beyond. This is driven by the needs of the energy, water management, and agriculture 
sectors, to name a few. There is an increasing realization that, unlike weather forecasts, prediction 
skill on longer time scales can leverage specific climate phenomena or conditions for a predictable 
signal above the weather noise. Currently, it is understood that these conditions are intermittent 
in time and have spatially heterogeneous impacts on skill, hence providing strategic windows of 
opportunity for skillful forecasts. Research points to such windows of opportunity, including El 
Niño or La Niña events, active periods of the Madden–Julian oscillation, disruptions of the strato-
spheric polar vortex, when certain large-scale atmospheric regimes are in place, or when persistent 
anomalies occur in the ocean or land surface. Gains could be obtained by increasingly developing 
prediction tools and metrics that strategically target these specific windows of opportunity. Across 
the globe, reevaluating forecasts in this manner could find value in forecasts previously discarded 
as not skillful. Users’ expectations for prediction skill could be more adequately met, as they are 
better aware of when and where to expect skill and if the prediction is actionable. Given that 
there is still untapped potential, in terms of process understanding and prediction methodologies, 
it is safe to expect that in the future forecast opportunities will expand. Process research and the 
development of innovative methodologies will aid such progress.
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There is high demand for predictions of meteorological conditions that extend beyond 2 
weeks. Outlooks at subseasonal to seasonal (S2S) and seasonal to decadal (S2D) time 
scales are met with growing expectations, driven by the needs of the energy, water 

management, agriculture, and emergency sectors, among others. Across the globe, users 
desire forecasts out to several weeks with the skill of a 5-day weather forecast. In the United 
States, expectations have been set by a recent report by the National Academies of Sciences, 
Engineering and Medicine (NASEM 2016) which suggested that S2S forecasts would, in 10 
years, be used like weather forecasts are today. Accordingly, a U.S. public law1 now includes a 
mandate for concerted efforts to develop S2S forecast products, which provides fresh impetus 
and new focus to the endeavor. More broadly, decades of past research results provide the 
scientific basis to guide forecast development and inform future research needs for S2S/S2D 
forecasts. This includes research under the auspices of the World Climate Research Programme 
(WCRP) and the World Weather Research Programme (WWRP); programs like CLIVAR and 
GEWEX; a WCRP–WWRP jointly organized S2S Prediction Project now in its second 5-yr phase 
(Vitart et al. 2017; WMO 2018); and the NOAA Climate Program Office S2S Prediction Task 
Force (Mariotti et al. 2019). Research indicates that skillful S2S/S2D forecasts can leverage the 
existence of particular initial or climate conditions for predictability beyond the predictable 
weather range of 1–14 days. The skill of weather predictions is flow dependent (Frame et al. 
2013; Ferranti et al. 2015). The fluctuations in skill increase as the forecast ranges get longer. 
As such, S2S/S2D skill is increasingly intermittent and can be best exploited by an approach 
to forecasting, product development, and evaluation that strategically targets such windows 
of opportunity. The idea of windows of opportunity is analogous to the fact that there is an 
annual cycle in weather forecast skill (i.e., winter forecasts generally tend to have more skill 
than summer forecasts, although this depends on the time scale, lead time, and prediction 
system; e.g., Beverley et al. 2019). This same idea applies to S2S/S2D forecasts but other 
intermittent sources of skill are considered such as, for example, the Madden–Julian oscillation 
(MJO) and the El Niño–Southern Oscillation (ENSO). Such an approach, also recommended 
by NASEM (2016), would more adequately address users’ expectations for skillful forecasts 
and actionable information.

Currently, much of the production and evaluation of S2S/S2D forecasts still reflects the 
heritage of weather forecasting. Forecasts are provided for predefined lead times and for 
specific regions of interest, depending on an organization’s 
mission requirements. The assessment of mean forecast skill 
is accomplished by comparing observations to retrospective 

1	 Weather Research and Forecasting Innovation 
Act of 2017. Public Law No. 115-25.
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forecasts for a historical period (i.e., hindcasts; typically over the preceding 2–3 decades). 
While this makes sense for weather forecasts, for which there is always a certain level of 
predictability tied to the initial conditions, the case is different for longer-lead forecasts. 
Here, predictability crucially relies on both initial conditions and slowly evolving coupled 
interactions among Earth’s components that can serve to constrain the chaotic evolution of 
the atmosphere. Such crucial coupled processes are often intermittent and have regionally 
dependent impacts (e.g., Vitart 2017; Lovejoy 2018). Whether they are at play, how nonlinear 
and nonstationary they might be, and how they interact with each other, determines whether 
potential skill exists beyond the 2-week weather predictability limit, that is, whether a fore-
cast opportunity exists. Having forecast tools that strategically target such windows is key 
for making the most of such opportunities.

Processes that provide forecast opportunities
The intermittency of opportunities for skillful long-lead predictions is already evident from 
long-lead weather forecasts, with those initiated from some atmospheric flow configurations 
being more skillful than others. Intrinsic predictability levels of different atmospheric states 
can be estimated from forecast ensembles.2 In reliable and well-calibrated3 prediction systems, 
the spread among ensemble members quantifies forecast uncertainty and the underlying 
predictability. At times when the forecast uncertainties are relatively small we deduce that 
the atmosphere is more predictable; higher predictability means a window of opportunity for 
more skillful forecasts. If we can identify processes and conditions that lead to these predict-
able conditions, we can potentially provide more useful S2S and S2D forecasts.

Midlatitude atmospheric processes. Midlatitude atmospheric processes can lead to circu-
lation patterns or weather regimes that affect predictability. For example, studies of flow-
dependent verification based on Euro-Atlantic midlatitude weather regimes indicate that 
European blocking is the regime associated with the least accurate medium range weather 
forecasts over Europe, while the negative phase of the North Atlantic Oscillation (NAO) leads 
to the most skillful predictions (Ferranti et al. 2015). In another example, forecasts for Europe 
made when the westerly jet across the Atlantic is displaced to the north (Atlantic ridge) tend 
to be less accurate (Frame et al. 2013). The physical processes that can reduce forecast skill 
are generally associated with atmospheric instabilities and weather regime transitions. At 
longer ranges, weather regimes play an increasingly important role. Their low frequency, 
large spatial scale, and sensitivity to tropical and stratospheric conditions point to processes 
that can matter for subseasonal predictions and beyond. For example, a persistent winter 
ridging was associated with California drought during 2013–16, even though the underlying 
causes have not been robustly established (e.g., Teng and Branstator 2017; Swain et al. 2017).

Quasi-stationary Rossby waves during boreal summer can also condition the skill of 
subseasonal predictions and impact the predictability of boreal summer climate extremes 
including heat waves, flooding events, and short-term droughts. Recent examples of such 
linkages include the 2003 European heat wave, the 2010 Russian 
heat wave, and the 2012 flash drought in the U.S. Great Plains 
(e.g., Schubert et al. 2011; Wang et al. 2014). Similar mechanisms 
are also at play in the Southern Hemisphere during its summer 
and similarly impact extremes such as the 2009 Australian 
heat wave (Parker et al. 2014). These waves often manifest as 
nearly circumglobal teleconnections in which the summer jets 
act as waveguides (e.g., Ding and Wang 2005; Beverley et al. 
2019), sometimes resulting in a synchronization of extremes 
over distant parts of the globe. While such waves appear to be 

2	 A forecast ensemble consists of several multiple 
independent forecasts (ensemble members) with 
perturbed initial conditions and/or perturbed 
model physics.

3	 In a reliable ensemble, forecast probabilities 
match the observed frequencies. An ensemble 
system can be made more reliable through sta-
tistical calibration, which aims to relabel the 
forecast probabilities, so that they match the 
observed frequencies.
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mainly forced by submonthly vorticity transients with limited predictability (Schubert et al. 
2011), there is mounting evidence that tropical processes (e.g., Newman and Sardeshmukh 
1998; Watson et al. 2016), land forcing (e.g., Koster et al. 2014), or even internal atmospheric 
resonance processes (Kornhuber et al. 2017), can amplify and sustain these planetary waves. 
Such processes could increase the predictability of associated extremes, such as heat waves 
over the United States and other continental regions, well beyond 2 weeks. Taking full ad-
vantage of the potentially enhanced predictability associated with quasi-stationary Rossby 
waves at subseasonal and longer time scales requires better understanding of their growth 
and persistence along with improved simulation and prediction of associated processes.

Tropical processes. Tropical processes involving interactions within the atmosphere, and 
between the atmosphere and the ocean, provide a primary source of predictability on sub-
seasonal time scales and beyond. Regions of organized deep convection in the tropics excite 
large-scale atmospheric teleconnection patterns through a variety of mechanisms: the linear 
dispersion of Rossby waves (e.g., Hoskins and Karoly 1981), modification of the background 
flow and Rossby wave breaking (e.g., Moore et al. 2010), and planetary wave propagation into 
the stratosphere (e.g., Smith and Kushner 2012; Plumb 2010). The potential for S2S predict-
ability from tropical sources lies in the “slow” and predictable evolution of large-scale tropi-
cal convection patterns, the 1–2-week time scale for the extratropical atmosphere to respond 
fully to tropical convective heating (e.g., Matthews et al. 2004), and the several weeks for 
stratospheric–tropospheric interactions to occur.

The MJO (Madden and Julian 1994), when active, is a tropical phenomenon that provides 
a major source of predictability on subseasonal time scales. During an MJO event, regions 
of large-scale convection propagate eastward along the equator on a 30–60 day timeframe 
(Matthews 2008), generating Rossby waves along the way that propagate poleward, producing 
a delayed response in the extratropics 1–2 weeks later. The MJO impacts over North America, 
in particular, are strongest and most consistent for MJO phases having an east–west dipole of 
convective heating in the Indian and western Pacific Oceans (Ting and Sardeshmukh 1993; 
Lin et al. 2010; Tseng et al. 2018) and may, when modulated by ENSO (Arcodia et al. 2020), 
potentially persist up to 5 weeks (Riddle et al. 2013). More broadly, the MJO impacts S2S 
predictability across the tropics, including the Maritime Continent; the Indian, Australian, 
and West African monsoon regions (e.g., Wheeler et al. 2009; Ventrice et al. 2011; Taraphdar 
et al. 2018); and parts of China (e.g., Song and Wu 2019). Especially promising is that current 
dynamical models now exhibit significant MJO skill beyond 30 days (Vitart 2017). Recent stud-
ies (Benedetti and Vitart 2018) show that there may be additional predictability associated 
with the MJO effect on atmospheric aerosols. While the MJO creates opportunities for skillful 
S2S forecasts, important caveats exist. In particular, it is now clear that not all phases of the 
MJO provide equal forecast opportunities, and only specific regions of the world are affected 
during certain times of the year (e.g., Garfinkel and Schwartz 2017). There is also evidence 
that the MJO effects are modulated by other climate phenomena (see below), and that models 
still exhibit significant weaknesses in their representation of the MJO and its teleconnections.

ENSO, a tropically coupled ocean–atmosphere climate phenomenon, is another leading 
source of predictability. Once active, its effects are felt on the S2S to multiannual time scales 
(DiNezio et al. 2017). During warm ENSO events, also known as El Niño, the eastern tropical 
Pacific is anomalously warm, while the eastern Indian Ocean and western tropical Pacific 
are anomalously cold. Opposite conditions exist during cold ENSO events, known as La Niña. 
These conditions evolve over the course of months to years and tend to be quite predictable, 
depending on the phase of ENSO (e.g., Zheng et al. 2016). Studies have shown additional 
predictability of El Niño events following large volcanic eruptions due to the ocean-dynamics 
thermostat mechanism described by Clement et al. (1996) and Eddebbar et al. (2019). Sea 
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surface temperature anomalies associated with ENSO induce patterns of organized anomalous 
tropical convection from which emanate global teleconnections via Rossby wave propagation, 
midlatitude jet alterations, and other mechanisms. ENSO predictability influences forecast 
skill from months to years, for example, influencing MJO teleconnections on subseasonal 
time scales (e.g., Leroy and Wheeler 2008), while modulating the midlatitude background 
flow on seasonal and longer time scales. ENSO-related predictability stems from the duration, 
strength, and location of specific ENSO events and the lags of remote teleconnections. ENSO 
impacts, and therefore ENSO-related predictability, are regionally and seasonally dependent, 
particularly outside the tropics.

It is particularly promising that current climate prediction systems are now able to predict 
the development of an ENSO event with some skill out to at least a year ahead depending on 
the initial conditions (Barnston et al. 2017). On the other hand, the ability of models to pre-
dict the details (e.g., spatial structure and amplitude of the SST anomalies) and exact timing 
of individual ENSO manifestations including the associated global teleconnections, is still 
limited at those forecast leads (e.g., Kim et al. 2012; Wang et al. 2009). As such, we are still 
far from taking full advantage of ENSO-related predictability.

Interplay of troposphere–stratosphere processes. Tropical processes providing opportu-
nities for S2S/S2D predictability extend to interactions with the stratosphere. Specifically, 
the stratospheric quasi-biennial oscillation (QBO; Baldwin et al. 2001) can modulate the 
predictability of the wintertime MJO and its teleconnections (e.g., Marshall et al. 2016; Zhang 
and Zhang 2018) as well as ENSO teleconnections (Garfinkel and Hartmann 2010). The QBO 
oscillates at a longer time scale than the MJO, around 28 months, with alternating easterly 
and westerly equatorial wind states that develop in the upper stratosphere and propagate 
downward until dissipating at the tropical tropopause. The modulation of midlatitude S2S 
extremes by the MJO depends on QBO phase. This effect has been demonstrated in the con-
text of U.S. West Coast atmospheric rivers (ARs; Baggett et al. 2017). Times when the QBO and 
MJO are both active provide windows of opportunity for improved forecasts of S2S extremes. 
Skillful empirical forecasts using only the MJO and QBO to forecast S2S extremes have already 
been realized (e.g., Mundhenk et al. 2018; Nardi et al. 2019, manuscript submitted to Wea. 
Forecasting).

Stratospheric processes associated with the winter stratospheric polar vortex also provide 
opportunities for enhanced S2S predictability. The polar vortex describes the climatological 
circumpolar stratospheric westerly winds that circle the pole in wintertime (Waugh et al. 
2017). About once every other year the Northern Hemisphere polar vortex is disrupted by 
tropospheric wave forcing and also by internal resonance of stratospheric waves (Birner 
and Albers 2017). When this happens, it can either be displaced off of the pole or split into 
two smaller vortices, and the stratosphere rapidly warms in a few days in an event called 
a sudden stratospheric warming (SSW; e.g., Butler et al. 2017). The anomalous winds and 
temperatures then slowly descend to the tropopause via wave–mean flow interactions and 
ultimately influence the tropospheric jet stream over a period of weeks to months (Baldwin 
and Dunkerton 2001). Typically, these impacts manifest as an increase in synoptic cyclone 
tracks over Europe and a decrease over the Russian Arctic, a tendency for colder-than-normal 
temperatures over Eurasia and the eastern United States, wetter conditions over southern 
Europe, and warmer temperatures over eastern Canada and subtropical Asia and Africa (see 
Fig. 1). In the Southern Hemisphere, stratospheric polar vortex variations have an impact on 
Australian hot and dry extremes (Lim et al. 2019). Deterministic predictability of SSW events 
is limited to 10–20 days (e.g., Karpechko 2018). Probabilistic SSW prediction likely depends 
on the state of the MJO, QBO, and ENSO, among other factors (e.g., Domeisen et al. 2019). 
ENSO, for example, can modulate both the strength of the polar vortex via its stratospheric 
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teleconnection, and the impact of SSWs on surface weather over the North Atlantic via its 
tropospheric teleconnection (Domeisen et al. 2020).

Once a SSW has occurred, the associated extreme stratospheric conditions can constrain the 
evolution of the atmosphere through wave–mean flow interactions. Since recovery to clima-
tological conditions after a SSW occurs on radiative time scales (several weeks in midwinter) 
the impacts of SSWs are long-lived, potentially allowing increased surface predictive skill 
3–6 weeks after an event (Sigmond et al. 2013). When the anomalous stratospheric conditions 
are simulated in a numerical weather prediction model, the extended period of anomalous 
wave–mean flow interactions can also shift a forecast away from climatology (Scaife et al. 
2016) and into weather regime states with enhanced predictability (e.g., Charlton-Perez et al. 

Fig. 1. SSW events affect (a)–(c) cyclone track frequency and (d)–(f) surface air temperature anomalies for at least a month 
after they occur. Cyclone track frequency (cyclones per week) is calculated using Hodges (1994) tracking algorithm within 
250 km of a given location for subsets of 1980–2015 January, February, or March days in the MERRA-2 data. (a) Cyclones 
that occurred within 30 days after a SSW event and (b) cyclones not within 30 days after a SSW event; (c) the difference 
between (a) and (b) with significance hatched for regions excluded by the 80% confidence interval smoothed by a 9-point 
smoother. (d)–(f) As in (a)–(c), but for daily 2-m temperature anomalies (K), with significance in (f) hatched at the 95% 
interval. Significance tested with n = 1,000 bootstrap resampling without replacement.
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2018). Other types of extreme stratospheric variability, such as vortex intensification, may 
also provide opportunities for predictability (Tripathi et al. 2015).

Land–atmosphere interactions. The land surface responds to sustained anomalies in the 
atmosphere on S2S time scales and can thus amplify and sustain anomalies to enhance pre-
dictability (Koster and Suarez 2001; Dirmeyer et al. 2018). Positive land–atmosphere feedback 
processes may exacerbate associated extremes (Koster et al. 2014) and enhance the persistence 
of major droughts (e.g., Vautard et al. 2007) and heat waves (e.g., Ford and Quiring 2014). 
Beyond these extremes, the land surface plays a role in S2S climate variations. In fact, any 
time and place that three specific conditions are met, the process chain for land–atmosphere 
feedbacks offers an opportunity for enhanced predictability (e.g., Dirmeyer et al. 2015). The 
first condition is sensitivity of the atmosphere to land surface state variations via changes in 
surface fluxes; the second is sufficient magnitude of variability in land surface states to drive a 
significant atmospheric response. These first two conditions are both in force in the so-called 
“hot spot” regions of land–atmosphere coupling such as the Great Plains of North America, 
the Sahel of Africa, the Indus River basin, much of Australia, southern Africa, and the Pampas 
of South America (Koster et al. 2004). The third necessary condition for land-driven predict-
ability on S2S time scales is memory or persistence of land surface anomalies. The greatest 
memory tends more toward arid regions, but memory can also persist and deliver anomalies 
across seasons when coupling emerges (e.g., Guo et al. 2011). Effects may be nonlocal, as the 
same circulation systems that can initiate anomalies in the land surface can serve to advect 
their effects downwind to other locations (Koster et al. 2014; Koster et al. 2016). When these 
three factors are combined and accounted for in the forecast models, there is opportunity 
for improved S2S prediction skill stemming from land–atmosphere interactions (e.g., Koster 
et al. 2011; Dirmeyer et al. 2018).

Mid- to high-latitude ocean–atmosphere interactions. In addition to ENSO and MJO 
related ocean–atmosphere processes, other oceanic dynamics and feedbacks outside the 
tropics more broadly provide opportunities for enhanced S2S predictability. For instance, 
Arctic sea ice anomalies have been linked with high- to midlatitude atmospheric anomalies 
(e.g., Alexander et al. 2004) and enhanced predictive skill (He et al. 2018). During years with 
low seasonal sea ice concentrations (when there is more heat loss from more exposed open 
water), the north–south differences in atmospheric temperatures across the Barents Sea are 
reduced. These conditions have been linked to wintertime cyclones traveling farther south 
into western Europe, instead of their tendency to move eastward toward Siberia, as well as 
more frequent cold winter extremes at midlatitudes (Petoukhov and Semenov 2010; Inoue et 
al. 2012; Mori et al. 2014). There is evidence for predictive skill for high-latitude climate due 
to midsummer sea ice extent anomalies (He et al. 2018). Predictability associated with sea 
ice processes, derives both from lead–lag relationships between the sea ice anomalies and 
the high- to midlatitude response, and also from our increasing capability to predict sea ice 
anomalies themselves a season ahead (e.g., Stroeve et al. 2014).

In another example, oceanic processes associated with western boundary currents, such 
as the Kuroshio and the Gulf Stream currents, are being explored as sources of atmospheric 
predictability (e.g., Smirnov et al. 2015). Such currents, bringing warm water from the tropics 
poleward, are associated with sharp oceanic temperature gradients. At the exit of such cur-
rents, are mesoscale eddies which carry anomalous warm SST as they propagate out of the 
formation region. Hence the evolution of currents and eddies in areas of sharp temperature 
gradients is associated with ocean–atmosphere heat flux anomalies that can potentially affect 
the weather on S2S time scales (Chelton and Xie 2010; Jia et al. 2019). For example, Haarsma 
et al. (2019) showed that resolving oceanic mesoscale features (eddies and fronts) near the 
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North Atlantic storm track translates into enhanced seasonal prediction skill compared to 
forecast systems that do not resolve oceanic mesoscale features.

Beyond S2S. While our primary focus here is on the S2S prediction problem, the windows 
of opportunity framework similarly applies to longer time scales. There is of course no clear 
spectral gap between variability at S2S time scales and the variability at decadal and longer 
time scales. In fact, while some phenomena already discussed for S2S, such as the MJO, have 
spectral peaks at subseasonal time scales, several others have substantial impacts beyond 
one season (e.g., ENSO or QBO). There are other processes that operate on multiyear and even 
multidecadal time scales that are particularly relevant to prediction at these longer time scales. 
Processes that involve slow ocean dynamics or long-lived atmospheric constituents, which 
affect S2S forecasts, can also lead to enhanced predictability on longer time scales, provided 
we can adequately capture underpinning processes in forecast models. As an example, the 
Atlantic meridional overturning circulation (AMOC) evolves on multidecadal time scales, and 
may provide potential predictability if it can be adequately simulated in prediction systems 
(e.g., Zhang and Zhang 2015). Also, particular Atlantic conditions may be especially condu-
cive to higher prediction skill. For example, when the Atlantic Ocean heat transport around 
50°N is strong at the initialization of a hindcast, SST skill in the northeast Atlantic at lead 
years 2–9 is significantly increased (Borchert et al. 2019). Also, when focusing on decadal 
hindcast skill in the North Atlantic subpolar gyre, skill is higher during strong multiyear 
trends, especially during the warming period of the 1990s, and lower in the absence of such 
trends (Brune et al. 2018).

The sudden injection of aerosols into the troposphere and stratosphere by a major volcanic 
eruption can alter climate for years (e.g., McCormick and Veiga 1992), while also influencing 
shorter term weather (Reale et al. 2011; Reale et al. 2014). While volcanic eruptions are not 
predictable, once they occur and their impact is captured in the initial conditions, they can 
enhance predictability across a variety of time scales (Benedetti and Vitart 2018). In addi-
tion, anthropogenic aerosols may also present a source of decadal predictability (Bellucci 
et al. 2017). Similarly, long-term increases in greenhouse gas concentrations and associated 
warming trends are a major source of predictability for surface air temperature and other 
surface meteorological variables, affecting the skill of climate forecasts at S2S time scales 
and beyond (e.g., Luo et al. 2011; Boer et al. 2013). For instance, Arctic sea ice anomalies due 
to polar amplification of long-term surface temperature increase have been linked to changes 
midlatitude weather (e.g., Cohen et al. 2014; Zhang et al. 2012). More broadly, there is a growing 
body of research examining the effects of climate variability and change on the predictability 
of extremes across the globe (e.g., Herring et al. 2019).

From windows of opportunities to forecast tools
Knowing which processes (e.g., atmospheric circulation, climate patterns, ocean dynamics, 
etc.) offer predictability is relevant for forecast interpretation as well as the development of 
new forecast tools. In fact, this knowledge must be reflected in our forecast models if we are 
to use them to identify opportunities for enhanced skill.

A priori identification of forecast opportunities. Providing an objective measure of the ex-
pected forecast accuracy is very valuable (e.g., Kalnay and Dalcher 1987; Molteni and Palmer 
1991). There are several examples of flow-dependent verification based on weather regimes. 
This approach has been applied to Euro-Atlantic weather regimes, as discussed above (Ferranti 
et al. 2015). Also, Vigaud et al. (2018a) used daily wintertime 500-hPa geopotential height 
fields to classify four weather regimes over the Pacific–North American sector that can be 
used to identify windows of high forecast opportunity in the midlatitudes by highlighting 
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persistent episodes in real time and in the forecasts. A prototype system has been set up at 
the International Research Institute for Climate and Society (IRI) to do this on a daily basis 
using the NOAA CFSv2 model. Forecast characteristics are plotted according to target day 
and lead time, permitting the visualization of a large number of forecast runs in a way that 
emphasizes forecast timing and consistency from one forecast to another (Tippett et al. 2012; 
Carbin et al. 2016). Similarly, cluster analysis of daily circulation/convection types and related 
modes of subseasonal predictability, has also been applied over South Asia (Moron et al. 
2012), the Maritime Continent (Moron et al. 2015), West Africa (Vigaud and Giannini 2018), 
the Caribbean (Vigaud and Robertson 2017), and South America (Muñoz et al. 2015, 2016; 
Doss-Gollin et al. 2018).

Tools are being developed to predict the skill of climate forecasts during windows of 
opportunity. Because of the fundamentally nonlinear and chaotic nature of the atmosphere, 
inherent nonlinear interactions act so rapidly that much of their effects are unpredictable on 
S2S time scales and beyond. What predictability remains can be well approximated by much 
simpler linear dynamics and a residual random “noise” (e.g., Hasselmann 1976; Penland and 
Sardeshmukh 1995). This approximation, empirically determined using the linear inverse 
model (LIM) technique (Penland and Sardeshmukh 1995), generates S2S forecasts about as 
skillful as those from operational dynamical models at both NCEP and ECMWF (e.g., Newman 
et al. 2003; Albers and Newman 2019). The LIM technique also allows identification of high 
skill cases or forecasts of opportunity ahead of time (Albers and Newman 2019; see example in 
Fig. 2). Such higher skill depends upon the similarity of the forecast initialization to patterns 

Fig. 2. The LIM empirical forecast model applied to identify MSLP winter forecasts of opportunity 
in the Pacific basin for up to 6 weeks lead time. The figure shows median hindcast skill (1999–2010) 
of wintertime Pacific basin MSLP weekly-averaged anomalies predicted by operational NCEP CFS 
and ECMWF IFS models and by the LIM model, for forecast leads ranging from 1 to 6 weeks. For 
each forecast system, two categories are shown: one where the LIM expects skill will lie in the 
upper 10% of all hindcasts (darker bars) and a second consisting of the remaining 90% of hind-
casts (lighter bars). Whiskers denote uncertainty due to the small hindcast sample size (based 
on bootstrap confidence intervals). Skill is measured by the pattern correlation of the forecast 
MSLP anomaly with its verification in the region 20°–60°N, 120°E–120°W. [Adapted from Albers 
and Newman (2019).]
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leading to the most rapidly amplifying anomalies within the LIM. For example, Newman 
et al. (2003) found that week 3 forecast skill of the 250-hPa extratropical streamfunction was 
largely related to how strongly the initialization matched varying combinations of only three 
patterns, which together represented ENSO, the MJO, and the Pacific–North American (PNA) 
teleconnection pattern.

North American week 3–4 temperature and precipitation. The combined influence of ENSO 
and the MJO significantly impacts the wintertime general circulation over North America for 
lead times up to at least 4 weeks. Based on these relationships, probabilistic 2-m tempera-
ture and precipitation forecasts over North America are now generated solely on the basis 
of the climatological linear trend associated with each variable along with their statistical 
relationships with the initial state of the MJO and ENSO (Johnson et al. 2014). Such forecasts, 
now used as part of the NOAA operational forecast suite (experimentally for precipitation), 
exhibit substantial skill for some regions and some initial states of the MJO and ENSO out to 
a lead time of approximately 4 weeks. The highest temperature forecast skill tends to follow 
MJO phases 2–3 and 6–7 owing to the strong extratropical response to the dipole convective 
heating anomalies associated with these phases (Lin et al. 2010; Tseng et al. 2018), although 
the precise MJO phases and regions with maximum skill are sensitive to the state of ENSO 
(Johnson et al. 2014).

Risk of severe cold spells over Europe. Forecast skill of the NAO has been shown to be 
conditioned on the presence of an MJO or SSW in the initial conditions (e.g., Sigmond et al. 
2013; Tripathi et al. 2015; Ferranti et al. 2018). By inferring surface weather through large-scale 
flow patterns, forecasters try to identify the spatial extent of temperature anomalies that are 
predictable at subseasonal time scales. For example, reliable subseasonal forecasts of the 
NAO and blocking are used to assess the risk of severe cold spells over Europe (Ferranti et al. 
2018). Current S2S models can deliver skillful forecasts for some large-scale patterns 2 weeks 
ahead, and longer in certain cases. This suggests that subseasonal predictions have the po-
tential to support early warnings of severe cold events over Europe. The success of predicting 
weeks ahead the changes in large-scale flow leading to cold spells depends on the type of 
regime transitions. For example, the ECMWF ensemble provides reliable probabilities of cold 
spells associated with the establishment of Greenland blocking (NAO−) well beyond 1 week 
(e.g., Ferranti et al. 2018). The predictive skill of such events can be significantly enhanced 
during MJO activity via tropical–extratropical teleconnections. Using the ensemble spread 
rate of change4 with lead time as a measure of predictability, it is possible to show that the 
NAO− circulation regime exhibits a higher level of inherent predictability than the European 
blocking regime (Ferranti et al. 2018).

Atmospheric rivers and extreme weather activity. As previously discussed, two modes of 
tropical variability offer windows of opportunity to forecast aspects of North America’s extreme 
weather at subseasonal lead times. Specifically, the MJO has 
been shown to modulate springtime hail and tornado activity 
(Thompson and Roundy 2013; Barrett and Gensini 2013), along 
with west coast snowpack (Guan et al. 2010), while the MJO and 
QBO have been shown to modulate wintertime AR frequencies 
(Baggett et al. 2017). Baggett et al. (2018) developed an empiri-
cal model using the current state of the MJO to forecast hail and 
tornado activity over the U.S. plains and found skillful forecasts 
of opportunity out to 5 weeks. A similar empirical model was de-
veloped by Mundhenk et al. (2018) that utilized both the states 

4	The ensemble spread, of a well-constructed 
ensemble prediction system, is an indicator of 
forecast uncertainties and the rate at which the 
spread grows is an estimate of predictability. 
As the ensemble spread grows rapidly with lead 
time, so does the forecast uncertainty, indicat-
ing reduced predictability. Conversely, as the 
ensemble spread grows slowly with lead time, 
so does the uncertainty, implying a smaller 
reduction in predictability.
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of the MJO and QBO to predict AR activity along the U.S. West Coast. This empirical model 
also produced skillful forecasts with lead times out to 5 weeks for specific combinations of 
MJO and QBO phases [see Fig. 3 for an example of derived forecast tools following Nardi et al. 
(2019, manuscript submitted to Wea. Forecasting)]. Dynamical models, by comparison, show 
skillful forecasts only out to ~2 weeks for similar variables (e.g., Carbin et al. 2016).

Atmospheric rivers and western U.S. water availability. The California Department of Water 
Resources and its research partners are exploring opportunities for skillful S2S forecasts to 
aid in the management of western U.S. water availability and related hazards under extreme 
conditions. Efforts have mainly targeted wintertime ARs as a major source of freshwater 
input and on ridging as a dominant way ARs are restricted. Relationships between weekly 
AR occurrence, ridging, and certain phases of ENSO, the Arctic Oscillation, the PNA, and 
the MJO (DeFlorio et al. 2018; Guirguis et al. 2018) have formed the basis for predictability 
considerations. An experimental prediction framework is being developed to predict weekly 
AR frequency (DeFlorio et al. 2018, 2019) based on hindcast and forecast information from the 
S2S Prediction Project (Vitart et al. 2017). Results indicate conditional useful skill 1–3 weeks 
ahead. Forecast tools under development focus on ridging types and persistence, as they relate 
to distinct characteristics and opportunities for enhanced predictability and skill; they also 

Fig. 3. MJO conditions opportunities to forecast atmospheric river activity with 3–4 weeks lead time. The figure shows 
the frequency of forecasts of opportunity calculated over all instances when the MJO is active at initialization during 
January–March. Opportunities are defined as phase and lead combinations for which the skill is significantly better than 
a random forecast at the 95% confidence level. Frequencies are calculated over all MJO phase and lead combinations from 
week 3 through week 4 (lead days 15–28). Atmospheric rivers are identified using a modified version of the Mundhenk 
et al. (2016) scheme (see Ralph et al. 2019), with the predictand defined as the 5-day forward running mean atmospheric 
river anomaly from climatology. The empirical prediction scheme is detailed in Nardi et al. (2019, manuscript submitted to 
Wea. Forecasting) and based on Mundhenk et al. (2018) and Johnson et al. (2014). Users can create similar figures using 
the web app: http: //barnes.atmos.colostate.edu/S2SPredictionModel/. (Figure courtesy of Kyle Nardi.)
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examine the integrated water vapor transport in a given week associated with ARs over the 
U.S. West Coast. Guirguis et al. (2018) identified circulation anomaly patterns associated with 
AR activity along the North American west coast and showed how seasonal variation in the 
prevalence of these weather types is associated with interannual variability in AR landfalls. 
Such knowledge is providing the basis for new experimental tools built on historical analogs.

Climate extremes. Operational centers currently produce forecasts for extremes or hazards 
on weather time scales, such as severe weather or heat extremes. Generally, such operational 
forecasts have not been extended into climate time scales. Examples of climate extremes 
include monthly or seasonal temperatures or accumulated precipitation amounts that have 
occurred infrequently in the climate record, which may be defined using the tails of the ob-
served distribution. These extremes can be the result of internal variability and can also be 
modulated by forcings such as increasing greenhouse gases. An example of a forecast of op-
portunity for climate extremes is that of flooding probabilities in Peru conditioned on ENSO 
states, given the heavy rains that typically accompany El Niño events. These forecasts of 
opportunity are now informing the development of potential early action plans. At seasonal 
forecast leads, these early action plans would be triggered with a high degree of confidence if 
several forecast criteria are met, such as El Niño SST anomalies (Niño region “1+2”) exceeding 
3°C or ensemble probabilities for precipitation above the 90th percentile exceeding 40% (Bazo 
et al. 2019). Interestingly, some studies have identified that subseasonal and seasonal climate 
models can more skillfully predict events with greater anomalies than events with anomalies 
closer to the mean (Becker et al. 2013; Becker and van den Dool 2018). These results suggest 
that useful outlooks for extreme events could be developed.

Challenges and benefits
While experimental tools that build on windows of opportunity are being developed, such 
an approach is not without challenges. At the outset, it is a question of culture. Recognizing 
that a forecast tool has scientific standing and practical value even if it provides information 
only when the opportunity arises is not customary. On the user side, both forecast centers 
and forecast users are accustomed to expecting forecasts on time, all the time. Adapting to 
an approach that provides probabilistic forecasts with information only in certain conditions 
requires a significant mindset shift. In seasonal forecasting, the approach to skill intermittency 
has been to issue probabilistic forecasts calibrated in order to yield climatological probabili-
ties in the absence of a forecast signal (Mason et al. 1999). This approach provides users with 
a forecast “all the time” which can be acted upon when and where the probabilities deviate 
from climatology, provided the forecasts are well calibrated to issue reliable probabilities (e.g., 
for tercile categories or exceedance/nonexceedance of user-defined thresholds; Barnston and 
Tippett 2014). This approach has recently been applied to subseasonal forecasts of precipita-
tion and temperature (e.g., Vigaud et al. 2017a, 2019), and discussed in the context of mon-
soonal climates (Vigaud et al. 2017b; Robertson et al. 2019), and East Africa/West Asia (Vigaud 
et al. 2018b). On subseasonal time scales, the NOAA Climate Prediction Center generates 
probabilistic forecasts following similar approaches for the calibration of dynamical model 
output (Unger et al. 2009; Strazzo et al. 2019). However, for subseasonal forecasts of particular 
meteorological variables such as precipitation, calibrated probabilities will often deviate very 
little from climatology, dependent on the region, season, and lead time. Furthermore, such 
methods of calibration may underestimate reliable probabilities of forecasts during periods 
of enhanced predictability. These could potentially be targeted more purposefully as part of 
a forecast of opportunity framework approach.

Moving toward opportunity-based forecast approaches may not always be practically 
achievable. Even when predictive linkages between processes and meteorological outcomes 
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have been theoretically established, it is another matter to build forecast tools that exploit 
such relationships. Among other things, this requires a large enough sample of past events 
to build statistically sound relationships as the basis of the new prediction tools. Building 
forecasts of opportunity automatically decreases the sample size as only a particular subset 
of days is being considered as training data. Sample size issues become particularly chal-
lenging for forecasts of events that happen rarely.

Advancing an opportunity-based forecast approach requires both foundational and ap-
plied research. This includes furthering our understanding of the processes that can lead 
to opportunities for enhanced predictability and forecast skill. In turn, this requires having 
robust observations as the basis of research, including key surface variables such as ocean 
mixed layer depth, sea ice thickness, snow water equivalent, soil moisture, etc. (NASEM 2016, 
2018), along with improved long-term reanalysis products that are consistent across Earth’s 
climate system. Research outcomes could point to new predictability sources to help allevi-
ate overreliance on well-established processes such as ENSO, which have limited relevance 
and applicability. Research is also needed to further develop prediction systems and statisti-
cal methodologies that build on observations, process understanding, and models for new 
opportunity-based forecasts. There is also the need to develop evaluation diagnostics and 
metrics that optimally evaluate such forecasts to inform the development of opportunity-
based prediction tools.

Last, but importantly, communication strategies need to be tackled. Given the intermittency 
in the occurrence of forecast windows of opportunity, their format may differ from typical 
weather forecasts made by operational centers. However, there are already examples of this 
approach in weather forecasting, where predictions of the risk of weather hazards are issued 
only when that risk is enhanced using the “watch” and “warning” progression. Another pos-
sible format is currently in operation at the Climate Prediction Center. Probabilistic hazard 
maps of extreme temperature, wind, and precipitation are issued for a lead time of 2 weeks. 
Rather than pinpointing exact locations and times as typical weather advisories and warn-
ings do, these maps subsume broad regions over several days where and when probabilities 
of hazardous weather are elevated. Forecasts of opportunity necessitate a different kind of 
response from users, who must understand the uncertainty associated with the forecast event. 
The development of capacity in forecasts of opportunity should be accomplished through the 
collaboration with potential users to ensure that forecast information is actionable (White 
et al. 2017).

Despite the challenges, the potential benefits of exploring opportunity-based forecast ap-
proaches are tantalizing, especially considering the current alternative of having forecasts 
with limited skill beyond weather time scales (Malloy and Kirtman 2020). Applying a window 
of opportunity approach to the examination of observational data and forecast system output 
could reveal new useful relationships and skill when and where it was thought there was none. 
This in turn could open the door to a new set of forecast products. With an approach that 
explicitly builds on specific opportunities, communication, and dissemination tools, users’ 
expectations could be more adequately met, as they are better aware of when and where to 
expect skill and if the prediction is actionable.

Given that there is still untapped potential, it is safe to expect that in the future the range 
of forecast opportunities will expand beyond what is currently available. There is much 
that is unknown. For example, it is conceivable that predictive processes exist that have not 
yet been detected based on observations or are not fully understood. Moreover, these pro-
cesses may not yet be well captured in our models and prediction systems that have limited 
resolution and parameterized physics. There are experimental statistical forecasts tools 
with consistent forecast skill in certain situations and for certain quantities at a level not yet 
achieved in our dynamical models based on current process understanding (e.g., for western 
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AR activity; Mundhenk et al. 2018). This is not surprising and, most importantly, it is also 
suggestive that further dynamical models’ skill improvement is to be expected and purpose-
fully sought after. For example, there is much variability in the ocean beyond ENSO that we 
are still trying to understand, simulate, and exploit for prediction purposes. Indeed, there 
are recent studies pointing to coupled processes both in the tropics (e.g., the MJO, the diurnal 
cycle, and monsoons) and mid- to high latitudes (e.g., sea ice, mesoscale frontal interactions) 
as important to modulate intraseasonal variability (e.g., Taraphdar et al. 2018; Li and Sriver 
2018; Alexander et al. 2004; Smirnov et al. 2015; DeMott et al. 2015; Chelton and Xie 2010; Jia 
et al. 2019). This is even truer when considering the broader set of Earth system components 
and interactions that could lead to enhanced predictability. It is logical to build opportunity-
based forecasts considering the processes that we understand create favorable conditions 
for enhanced forecast skill and improve our dynamical prediction systems so they optimally 
represent them. However, empirical models or dynamical models based on forecast output 
models (i.e., hybrid models) have already shown promise (e.g., Dobrynin et al. 2018) and may 
continue to be a synergetic innovative way forward for exploring predictability potential, until 
underpinning mechanisms can be more fully understood and better simulated by dynamical 
forecasts systems.
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